В звездном скоплении Омега Центавра обнаружена массивная черная дыра


Рис. 1. Распределение плотности в звездном скоплении Омега Центавра. По горизонтальной оси отложено расстояние от центра скопления в угловых единицах (секундах дуги); по вертикальной — плотность в массах солнца на кубический парсек (масштаб логарифмический). Нижняя кривая соответствует распределению звезд — светящегося вещества. Верхняя отражает вклад темной составляющей массы. Эта кривая получена по результатам изучения распределения скоростей звезд в центральной части скопления. Существенная разница между двумя кривыми говорит о том, что в центре скопления есть невидимая масса. Видно, что плотность темного компонента достигает в самых внутренних областях нескольких миллионов масс Солнца в кубическом парсеке. Рис. из обсуждаемой статьи Noyola E. et al., arXiv:0801.2782
Рис. 1. Распределение плотности в звездном скоплении Омега Центавра. По горизонтальной оси отложено расстояние от центра скопления в угловых единицах (секундах дуги); по вертикальной — плотность в массах солнца на кубический парсек (масштаб логарифмический). Нижняя кривая соответствует распределению звезд — светящегося вещества. Верхняя отражает вклад темной составляющей массы. Эта кривая получена по результатам изучения распределения скоростей звезд в центральной части скопления. Существенная разница между двумя кривыми говорит о том, что в центре скопления есть невидимая масса. Видно, что плотность темного компонента достигает в самых внутренних областях нескольких миллионов масс Солнца в кубическом парсеке. Рис. из обсуждаемой статьи Noyola E. et al., arXiv:0801.2782

По наблюдениям на космическом телескопе «Хаббл» и наземном телескопе «Джемини» получены серьезные указания на то, что в звездном скоплении Омега Центавра находится черная дыра с массой около 30 000–50 000 масс Солнца. Это, во-первых, подтверждает, что Омега Центавра — не обычное шаровое скопление нашей Галактики, а остаток карликовой галактики, захваченной нашей. Во-вторых, масса открытой черной дыры прекрасно укладывается в известную зависимость этой величины от массы сферической составляющей в галактиках, позволяя продлить эту корреляцию в область небольших (по галактическим меркам) масс. Раньше до столь малых масс не дотягивались.

Рис. 2. Скопление Омега Центавра (NGC 5139)
Рис. 2. Скопление Омега Центавра (NGC 5139)

Омега Центавра (? Centauri), или NGC 5139, — гигантское звездное скопление с массой около 5 миллионов солнечных. По форме оно похоже на шаровое, однако детальный анализ его свойств давно заставил ученых усомниться в том, что мы просто имеем дело с самым большим шаровым скоплением нашей Галактики. Полагают, что Омега Центавра — это небольшая галактика, захваченная нашей около 10 миллиардов лет назад и «ободранная», то есть мы видим лишь плотное ядро, а внешние звездные оболочки карликовой галактики были разрушены приливными силами и звезды из них вошли в состав нашей Галактики.

На такое происхождение указывают многие свойства Омеги Центавра, например разнообразный звездный состав, который требует нескольких эпизодов звездообразования (у шаровых скоплений звезды имеют примерно одинаковый возраст и химический состав, хотя совсем недавно и у обычных «шаровиков» стали обнаруживать некоторое разнообразие звездных населений).

Омега Центавра — не единственное скопление, для которого предполагают, что в прошлом оно было самостоятельной галактикой. Кроме того, сейчас мы видим процесс поглощения карликовой галактики в созвездии Стрельца (шаровое скопление М54 может быть ядром этой галактики). Тем не менее Омега Центавра — самое крупное из таких скоплений, и его изучение представляет особый интерес.

Если это скопление когда-то было самостоятельной галактикой, то вполне можно заподозрить, что в его центре находится массивная черная дыра, поскольку современные данные говорят нам, что каждая галактика с массивным балджем (сферической составляющей; от англ. bulge «выпуклость, вздутие») имеет черную дыру. Чем массивнее балдж, тем массивнее черная дыра.

Авторы статьи провели детальное исследование распределения звездной плотности в скоплении, а также скоростей звезд. Дело в том, что наличие большой центральной массы приводит к небольшому пику — каспу (от англ. cusp «пик, выступ») — в распределении звезд, а кроме того, массивный объект будет заставлять звезды вращаться быстрее — то есть возрастет дисперсия скоростей в самой центральной области скопления (к сожалению, измерять скорости отдельных звезд в скоплении трудно из-за их высокой пространственной плотности, поэтому определяют дисперсию).

На рис. 1 в начале статьи показаны два распределения плотности в скоплении. Нижняя кривая соответствует распределению звезд — светящегося вещества (грубо говоря, подсчитали число звезд в единице объема и таким образом оценили массу). Верхняя кривая отражает вклад темной (невидимой) составляющей массы. Эта кривая получена по результатам изучения распределения скоростей звезд в центральной части скопления. Ведь скорости звезд не зависят от того, светится притягивающее их вещество или нет. Дисперсия скоростей звезд определяется по спектру. Исследуются спектральные линии, которые смещаются из-за эффекта Доплера. Измеряя дисперсию скоростей звезд на разном расстоянии от центра скопления, можно построить профиль распределения массы в нём.

Существенная разница между двумя кривыми свидетельствует о том, что в центре скопления есть невидимая масса. Темная составляющая доминирует только в центре, что говорит о том, что масса ее невелика по сравнению с полной звездной массой скопления, а также о том, что невидимое вещество сильно сконцентрировано в центральной части.

Итак, из рисунка видно, что что-то темное «сидит» в центральной части скопления. Что это может быть? Конечно, это может быть одна массивная черная дыра. Но, может быть, есть какие-то альтернативы? Например, это может быть скопление 10 000 звездных остатков (нейтронных звезд или черных дыр). Анализ такой возможности с помощью численных моделей показывает, что подобная структура не могла образоваться в Омеге Центавра. Значит, мы имеем дело с одной черной дырой.

Напомню, что наблюдается два типа черных дыр: звездных масс и сверхмассивные. Первые образуются после коллапса массивных звезд. Соответственно, массы таких черных дыр лежат в пределах от единиц до нескольких десятков масс Солнца. Вторые находятся в центрах множества галактик (см. обзор). Сверхмассивные черные дыры набирают свою массу за счет аккреции газа и темной материи, а также за счет слияний с другими центральными черными дырами, когда происходит слияние галактик. Если галактика достаточно массивна, то черная дыра может вырасти до нескольких миллиардов масс Солнца. Однако в решении вопроса о росте массы сверхмассивных черных дыр еще много неясностей (см., например, статьи 0705.2269 и astro-ph/0506040). Кроме того, астрофизики говорят и о черных дырах промежуточных масс. Во-первых, об этом идет речь при обсуждении так называемых ультрамощных рентгеновских источников. Во-вторых, черные дыры промежуточных масс заподозрены у двух шаровых скоплений. В случае Омеги Центавра мы, скорее всего, имеем дело с родственницей сверхмассивных черных дыр. То есть механизм образования черной дыры был таким же, как и у ее «родственников» в центрах галактик. Такой механизм не должен работать для обычных шаровых скоплений, поскольку история их формирования и жизни иная.

Рис. 3. Зависимость массы центральной черной дыры от дисперсии скоростей в балдже галактики или в центральной области скопления. Масса черной дыры отложена по вертикальной оси (масштаб логарифмический, массы выражены в массах Солнца). Дисперсия скоростей звезд — по горизонтальной (тоже в логарифмическом масштабе, в км/с). Большая дисперсия скоростей соответствует большой массе сферической составляющей. Рис. из обсуждаемой статьи Noyola E. et al., arXiv:0801.2782
Рис. 3. Зависимость массы центральной черной дыры от дисперсии скоростей в балдже галактики или в центральной области скопления. Масса черной дыры отложена по вертикальной оси (масштаб логарифмический, массы выражены в массах Солнца). Дисперсия скоростей звезд — по горизонтальной (тоже в логарифмическом масштабе, в км/с). Большая дисперсия скоростей соответствует большой массе сферической составляющей. Рис. из обсуждаемой статьи Noyola E. et al., arXiv:0801.2782

На рис. 3 показана известная зависимость между массами черных дыр и дисперсией скоростей звезд.

Дисперсия определяется из спектральных наблюдений. Для определения масс черных дыр существует несколько способов, дающих достаточно хорошие оценки (неопределенности показаны «усами» у точек). Например, метод реверберационного картирования или интереснейший способ, связанный с детальным изучением свойств диска вокруг черной дыры по данным о линзировании. Но разговор о всех методах определения масс сверхмассивных черных дыр увел бы нас далеко в сторону.

Кроме галактик на график нанесены также точки для двух шаровых скоплений и для Омеги Центавра. Видно, что точки для черных дыр в скоплениях и в галактиках лежат примерно на одной прямой. То есть «семейный портрет» черных дыр подтверждает их «родство».

Безусловно, данные, полученные авторами статьи, будут проверяться и уточняться. Дело в том, что анализ скоростей звезд в столь плотном скоплении — дело непростое. Тем не менее результаты выглядят очень надежными.

Было бы интересно увидеть какую-то активность черной дыры, например в рентгеновском или инфракрасном диапазонах. «Наша» черная дыра, являясь очень спокойным монстром, тем не менее выдает себя своей активностью. Правда, масса черной дыры в Омеге Центавра в сто раз меньше массы черной дыры в центре нашей Галактики, и, кроме того, в этом скоплении меньше газа, который мог бы аккрецировать на черную дыру. Так что наблюдательные проявления свежеоткрытой дыры будут, скорее всего, слабее — не зря же за все годы исследований Омеги Центавра никаких проявлений «монстра» не заметили. Но поскольку появился мотив для более глубокого поиска, что-то подобное, может быть, удастся открыть и в Омеге Центавра. Ведь теперь начнется настоящая охота на диковинного зверя.

Источник: Eva Noyola, Karl Gebhardt, Marcel Bergmann. Gemini and Hubble Space Telescope Evidence for an Intermediate Mass Black Hole in omega Centauri // astro-ph, 17 Jan 2008; arXiv:0801.2782.

Сергей Попов

<< Назад