Зачем студенту зеленый шарик Вольвокса?


Колонии Вольвокса — это сферы из тысяч одинаковых клеток, объединенных слизистым матриксом. Внутри полых сфер шарики дочерних колоний, а в них уже начали расти крошечные внучки (фото с сайтаwww.microscopy-uk.org.uk)
Колонии Вольвокса — это сферы из тысяч одинаковых клеток, объединенных слизистым матриксом. Внутри полых сфер шарики дочерних колоний, а в них уже начали расти крошечные внучки (фото с сайтаwww.microscopy-uk.org.uk)

Колониальная зеленая водоросль вольвокс — хрестоматийный объект, на примере которого студентам и школьникам объясняют, каким образом из одноклеточных организмов получились многоклеточные. В статье профессора МГУ Н. А. Заренкова «Неевклидов Вольвокс, или почему не следует преподавать вольвокса в курсе зоологии», опубликованной в Журнале общей биологии, оспаривается правомочность такой интерпретации этого необычного организма.

Вольвокс, как мы помним из школьного курса биологии, — это зеленая водоросль, клетки которой группируются в сферу. Сфера может состоять из нескольких тысяч клеток, каждая из них имеет два жгутика и красный глазок. Этот многоклеточный шарик передвигается за счет движения жгутиков, обращенных наружу. Вольвоксов можно увидеть летом в любом водоеме, а любители поразглядывать всякую мелочь под микроскопом считают вольвокса одним из чудес микромира.

Студенты изучают вольвокса более подробно. В классическом курсе зоологии В. А. Догеля вольвокс приведен в качестве примера самого примитивного многоклеточного существа на Земле. Действительно, это всего лишь сфера из соединенных между собой фотосинтезирующих клеток в слизистом матриксе. Правда, при этом подчеркивается, что у такого простого многоклеточного организма уже имеется клеточная дифференциация: одни клетки выполняют роль соматических, а другие становятся репродуктивными. Только из репродуктивных клеток могут сформироваться дочерние колонии. Как и у других водорослей, в жизненном цикле вольвокса имеется бесполое и половое поколение, то есть одни колонии получаются вегетативным путем (без оплодотворения), а другие — в результате слияния половых клеток.

Традиционно считается, что в основе развития живого лежит движение «от простого к сложному». В соответствии с этим принципом, становление многоклеточности рассматривается как движение от простых колониальных форм к сложным. Индивидуальное развитие самого простого многоклеточного организма интерпретируется как модель происхождения многоклеточности. Зародыш вольвокса представляет собой диск, который заворачивается в маленькую сферу. Предполагается, что дальнейшие эволюционные преобразования проходили по принципу миграции части клеток внутрь сферы и последующей дифференциации клеток в ткани и органы. Вольвокс же остановился на стадии полой сферы. Студентам предлагается именно эта схема.

Однако Н. А. Заренков акцентирует внимание на том, что механизмы дифференциации клеток на соматические и репродуктивные у вольвокса и механизмы дифференциации клеток у зародышей настоящих многоклеточных разные. Причем это касается в равной мере и реальных зародышей многоклеточных животных, и гипотетического предка многоклеточных — фагоцителлы И. И. Мечникова. Рассуждения автора основаны прежде всего на геометрии зародышей вольвокса и настоящих многоклеточных.

Так выглядит взросление Вольвокса. а) В течение первых пяти делений получается зародышевый диск из 32 одинаковых клеток, этот диск сворачивается в сферу и из стенки родительской колонии выходит во внутреннее пространство колонии. b) Шестое деление клеток дает по две неравных по размеру клетки, одну большую и одну маленькую. с) Большие клетки делятся еще несколько раз на неравные по размеру клетки, а потом и вовсе прекращают деление, а маленькие клетки в это время продолжают обычное равномерное деление. d) На одном конце сферического зародыша появляется крестообразное отверстие. e) Это один из самых волнующих эпизодов взросления Вольвокса. Все клетки до того момента располагались жгутиками внутрь, так получилось, когда зародышевый диск сворачивался в сферу в начале развития, то есть был вывернут наизнанку. Теперь же зародыш должен вывернуться на лицевую сторону. И вот зародыш через появившееся отверстие начинает это выворачивание. f) После того как зародыш вывернулся до конца и все его жгутики торчат наружу, он считается совершеннолетним, после только увеличивается в размерах и вскоре покидает родительскую сферу. Из статьи D.L.Kirk (2005)
Так выглядит взросление Вольвокса. а) В течение первых пяти делений получается зародышевый диск из 32 (25) одинаковых клеток, этот диск сворачивается в сферу и из стенки родительской колонии выходит во внутреннее пространство колонии. b) Шестое деление клеток дает по две неравных по размеру клетки, одну большую и одну маленькую. с) Большие клетки делятся еще несколько раз на неравные по размеру клетки, а потом и вовсе прекращают деление, а маленькие клетки в это время продолжают обычное равномерное деление. d) На одном конце сферического зародыша появляется крестообразное отверстие. e) Это один из самых волнующих эпизодов взросления Вольвокса. Все клетки до того момента располагались жгутиками внутрь, так получилось, когда зародышевый диск сворачивался в сферу в начале развития, то есть был вывернут наизнанку. Теперь же зародыш должен вывернуться на лицевую сторону. И вот зародыш через появившееся отверстие начинает это выворачивание. f) После того как зародыш вывернулся до конца и все его жгутики торчат наружу, он считается совершеннолетним, после только увеличивается в размерах и вскоре покидает родительскую сферу. Из статьи D.L.Kirk (2005)

Дифференциация клеток происходит из-за неравномерного распределения ресурсов (любых ресурсов!) в пределах ассоциации клеток. Равномерное распределение ресурсов между клетками может теоретически достигаться только тогда, когда контакт всех клеток со всеми одинаков или легко и быстро устанавливается. Понятно, что чем больше клеток, тем труднее устанавливается контакт всех со всеми. Мало того, в зависимости от того, в какую фигуру организованы клетки, эта неравномерность контактов будет различна.

В фигуре типа «плоский диск» (такая стадия есть в развитии вольвокса, но отсутствует у настоящих многоклеточных) сильнее всего будут отличаться от других клетки наружного края, то есть возникнет радиальный градиент условий. У фигуры типа «шар» неоднородность контактов будет направлена от центра шара к периферии. Все эти неравномерности будут создавать различные типы дифференциации. У сферы будут создаваться отдельные ассоциации клеток, которые связаны между собой сильнее, чем с соседними группами. У шара дифференциация будет послойная. И при этом один тип дифференциации никак не выводится из другого, здесь нет движения от простого к сложному, здесь есть, как подчеркивает автор статьи, лишь разнообразие типов дифференциации.

Необходимо заметить, что данная работа — это лишь отсвет того взрыва публикаций, который наблюдается в современной научной литературе по проблеме формообразования и становления многоклеточности у животных. И сейчас вполне утвердилось мнение о том, что вольвокс не является примитивной формой многоклеточного организма. Самые древние формы вольвокса известны из отложений среднего карбона (около 300-320 млн лет назад), а древнейшие многоклеточные регистрируются палеонтологической летописью около 580 млн. лет назад. А молекулярные данные говорят о более древнем происхождении многоклеточных (1 млрд лет назад).

Развитие вольвокса имеет ряд удивительных особенностей, и он никак не может считаться примитивным. Например, в нем присутствует стадия выворачивания дочерней колонии наизнанку. Но вместе с тем аналоги некоторых генов, отвечающих за дифференциацию клеток у вольвокса, известны у всех других многоклеточных. Однако самым любопытным фактом, на мой взгляд, является то, что столь важное эволюционное событие, как появление многоклеточности, происходило неоднократно у разных групп животных и растений. Причем рекордсменом, достойным книги Гиннеса, является то семейство водорослей, к которому принадлежит вольвокс: многоклеточность в нем возникала независимо не менее 9 раз!

Источник: Н. А. Заренков. Неевклидов Вольвокс, или Почему не следует преподавать вольвокса в курсе зоологии // Журнал общей биологии, 2006, т. 67, № 1, с. 53-61.

<< Назад